
Communication

Homogeneous Palladium Catalyst Suppressing Pd Black Formation in Air Oxidation of Alcohols

Tetsuo Iwasawa, Makoto Tokunaga, Yasushi Obora, and Yasushi Tsuji

J. Am. Chem. Soc., 2004, 126 (21), 6554-6555• DOI: 10.1021/ja031936I • Publication Date (Web): 07 May 2004

Downloaded from http://pubs.acs.org on March 31, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 4 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 05/07/2004

Homogeneous Palladium Catalyst Suppressing Pd Black Formation in Air Oxidation of Alcohols

Tetsuo Iwasawa, Makoto Tokunaga, Yasushi Obora, and Yasushi Tsuji*

Catalysis Research Center and Division of Chemistry, Graduate School of Science, Hokkaido University, CREST, Japan Science and Technology Corporation (JST), Sapporo 001-0021, Japan

Received December 24, 2003; E-mail: tsuji@cat.hokudai.ac.jp

A homogeneous transition metal-catalyzed reaction is one of the most versatile methods for synthesizing useful and necessary molecules. However, there is a persistent problem that metal aggregation and precipitation cause catalyst decomposition and a considerable loss of catalytic activity.¹ In particular, Pd catalysts are known to aggregate easily and form Pd black, although they realize a wide variety of useful reactions in organic synthesis.² To overcome this intrinsic problem of homogeneous Pd catalysis, we explored a new class of Pd catalyst with adopting aerobic oxidation of alcohols as a probe reaction.

Recently, aerobic oxidation of alcohols catalyzed by a homogeneous transition metal complex has received considerable attention as an environmentally benign reaction.³ Among them, Pd catalyst shows a good catalytic activity^{4,5} and asymmetric oxidation also has been realized.⁶ However, if reaction conditions were not fixed properly in these reactions, the Pd black formed very easily.^{3a,4a,d,e,5} There are two keys to successful catalytic reaction without the Pd black formation. One is sufficient oxygen partial pressure (typically 1 atm molecular oxygen,^{4a-e,g,5c,6} rather than air^{4f,5}). The other is low substrate to catalyst molar ratio (S/C: typically 20^{4a,c-f,6a,d,e} or less^{4f,6b}).⁷

Herein we report a new catalyst system that suppresses the Pd black formation even under 1 atm air and with a high S/C (>1000). None of the homogeneous palladium catalysts reported so far⁴⁻⁷ would survive under these reaction conditions. We designed and prepared pyridine derivatives having a 2,3,4,5-tetraphenylphenyl⁸ substituent and its higher dendritic unit at the 3-position (1 and 2). The palladium complexes having 1 and 2 as a ligand, namely, Pd(OAc)₂(1)₂ and Pd(OAc)₂(2)₂, successfully suppress the Pd black formation and achieved the highest TON = 1480 in homogeneous palladium-catalyzed air oxidation of alcohols.^{9,10}

Dendrimers having a 2,3,4,5-tetraphenylphenyl moiety were synthesized by Müllen et al. and utilized as polyphenylene nanomaterials.8 We are interested in their spatially spread rigid structure. A series of novel pyridine derivatives bearing the 2,3,4,5tetraphenylphenyl substituent, 1-6, were synthesized (Figure 1). Due to its limited solubility of 3, a methylated analogue (2) was prepared. These pyridine ligands 1-5 as well as pyridine (Py), 3-phenylpyridine (3-PhPy), 3,5-diphenylpyridine (3,5-diPhPy), and 2,2'-bipyridine (Bipy) readily reacted with Pd(OAc)₂ in toluene and afforded the $Pd(OAc)_2(ligand)_2$ complexes quantitatively. The molecular structure of $Pd(OAc)_2(1)_2$ determined by crystallographic analysis is shown in Figure 2.11 It is evident that the 2,3,4,5tetraphenylphenyl substituent at the 3-position of the pyridine ring spatially spreads out and covers the wide area over the long-range from the Pd center. On the other hand, steric congestion around the Pd coordination sphere is essentially the same as that of corresponding pyridine complex Pd(OAc)₂(Py)₂,¹² implying that the large substituent at the 3-position would not obstruct the metal center.

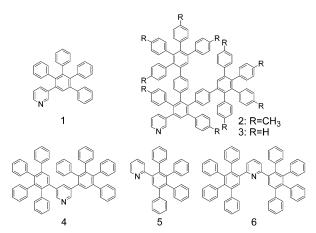
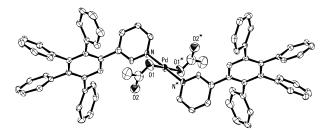



Figure 1. Novel pyridine ligands having 2,3,4,5-tetraphenylphenyl moiety.

Figure 2. ORTEP drawing of $Pd(OAc)_2(1)_2$ with thermal ellipsoids at 50% probability levels. Hydrogen atoms have been omitted for clarity.

Actually, $Pd(OAc)_2(Py)_2$ and $Pd(OAc)_2(1)_2$ showed comparable catalytic activity at S/C = 20 in the aerobic oxidation of alcohols.

The Pd(OAc)₂(ligand)₂ was employed as a catalyst in the air oxidation in toluene at 80 °C (Table 1). The molar ratio of the alcohol to Pd(OAc)₂(ligand)₂ was fixed to 1000 (S/C = 1000). As an additive, NaOAc^{4b,5a} (0.1 equiv based on the alcohol) was employed.

Pd(OAc)₂ did not show catalytic activity in the oxidation of 1-phenylethanol (run 1). On the other hand, Pd(OAc)₂(Py)₂ catalyzed the oxidation and afforded acetophenone in 23% yield in 2 h. However, at this moment, the Pd catalyst decomposed completely into Pd black¹³ and the oxidation stopped (run 2). Pd(OAc)₂(3-PhPy)₂ and Pd(OAc)₂(3,5-diPhPy)₂ also resulted in complete Pd black formation within 6 h and afforded acetophenone in 34 and 32% yields, respectively (run 3 and 4). The reaction with Pd(OAc)₂(Bipy)₂ was very sluggish, although no Pd black formed (run 5). In contrast, Pd(OAc)₂(1)₂ afforded acetophenone in 87% yield without the Pd black formation (run 6) and the product was isolated in 97% yield after a prolonged reaction time (130 h). The higher dendritic analogue Pd(OAc)₂(2)₂ is a more efficient catalyst (run 7), realizing the highest TON = 1480 with S/C = 2000 (run 8). Pd(OAc)₂(4)₂ also catalyzed the reaction without the Pd black

 Table 1.
 Effect of Pyridine Ligands on Palladium-Catalyzed Air

 Oxidation of Alcohols^a
 Palladium-Catalyzed Air

run	alcohol	ligand ^b	time (h)	% yield ^c	Pd black formation ^d
1	1-phenylethanol ^e	none	7	trace	+
			24	trace	+
2		Ру	2	23	+
		-	24	23	+
3		3-PhPy	6	34	+
4		3,5-diPhPy	6	32	+
5		Bipy	24	3	_
			72	6	_
6		1	24	57	_
			72	87	_
7		2	24	78	_
			72	>99 (95)	_
8^{f}		2	96	74	_
9		4	24	44	_
			72	63	_
10	2-octanol ^g	Ру	2	21	+
11^{h}		Ру	5	23	+
12		3-PhPy	3	21	+
13		3,5-diPhPy	3	15	+
14		1	96	69	_
15		2	96	79 (75)	_
16		4	96	67	-

^{*a*} At 80 °C with S/C = 1000 in toluene under air (balloon). ^{*b*} Ligand of the Pd(OAc)₂(ligand)₂. ^{*c*} Determined by GC. Isolated yields in parentheses. ^{*d*} +: Complete Pd black formation. -: No Pd black formation. ^{*e*} 1-Phenylethanol (2 mmol), Pd(OAc)₂(ligand)₂ (0.002 mmol), NaOAc (0.2 mmol), and toluene (1 mL). ^{*f*} S/C = 2000, Pd(OAc)₂(2)₂ (0.001 mmol). ^{*s*} 2-Octanol (2.5 mmol), Pd(OAc)(ligand)₂ (0.0025 mmol), NaOAc (0.25 mmol), and toluene (0.8 mL). ^{*h*} With additional pyridine (0.02 mmol).

Table 2. Palladium-Catalyzed Air Oxidation of Various Alcohols^a

run	alcohol	S/C	ligand ^b	time (h)	% yield ^c	Pd black formation
1	benzyl alcohol	1000	2	48	78^d	_
2	<u> </u>		1	48	74^d	_
3			Py	2	23^d	+
4	2-heptanol	1000	2	72	72	_
5	•		1	72	52	-
6			Py	8	27	+
7	3-octanol ^e	1250	2	96	63	_
8			1	96	65	—
9			Ру	4	18	+
10	3,3-dimethyl-2-butanol	1000	1	96	89	—
11			Ру	4	32	+
12	1-(4-methylphenyl)ethanol	750	1	44	81	—
13			Ру	3	32	+
14	4-isopropylbenzyl alcohol	720	1	45	74^d	—
15			Ру	1	24^d	+
16	2-hexanol	1000	1	96	72	—
17			Py	2	24	+
18	trans-2-methylcyclohexanol	1300	1	74	65	—
19	-		Ру	3	17	+

^{*a*} At 80 °C with Pd(OAc)₂(ligand)₂ (0.002 mmol) and NaOAc (0.1 equiv to the alcohol) in toluene (1 mL) under air (balloon). ^{*b*} Ligand of the Pd(OAc)₂(ligand)₂. ^{*c*} Determined by GC. ^{*d*} Corresponding aldehyde. ^{*e*} Toluene (0.8 mL).

formation (run 9). However, the use of Pd(OAc)₂(**5**)₂ and a mixture of Pd(OAc)₂ and **6** (**6**/Pd = 2) as the catalyst resulted in trace yields due to the Pd black formation. Thus, the spatially spread moiety at the 3-position, not at the 2-position, effectively suppresses the Pd black formation and maintains the catalytic activity for a long time.¹⁴ Similar suppression was also observed in oxidation of 2-octanol (runs 10–16). Pd(OAc)₂(Py)₂ afforded Pd black within 2 h (run 10). It is noteworthy that even if an excess of pyridine (8 equiv) with respect to Pd(OAc)₂(Py)₂ was added (N/Pd = 10) in this system, Pd black formed within 5 h (run 11).

The marked effects of **1** and **2** over pyridine (Py) as a ligand at a high S/C ratio were also observed in the oxidation of other alcohols under air (Table 2). $Pd(OAc)_2(1)_2$ and $Pd(OAc)_2(2)_2$ maintained the catalytic activity to provide the products in high yields, while $Pd(OAc)_2(Py)_2$ afforded the Pd black within 1–4 h. A similar oxidation of allylic and primary aliphatic alcohols with $Pd(OAc)_2(1)_2$ and $Pd(OAc)_2(Py)_2$ resulted in low yields (5–30%). Further studies on prevention of catalyst deactivation are now in progress.

Supporting Information Available: Experimental procedures and spectroscopic data for 1-6 (PDF) and crystallographic data for Pd(OAc)₂(1)₂ (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) van Leeuwen, P. W. N. M. Appl. Catal., A 2001, 212, 61–81. (b) Parshall, G. D.; Ittel, S. D. Homogeneous Catalysis; John Wiley and Sons: New York, 1992; p 168.
- (2) (a) Tromp, M.; Sietsma, J. R. A.; van Bokhoven, J. A.; van Strijdonck, G. P. F.; van Haaren, R. J.; van der Eerden, A. M. J.; van Leeuwen, P. W. N. M.; Koningsberger, D. C. Chem. Commun. 2003, 128–129. (b) Tsuji, J. Palladium Reagents and Catalysts; Wiley-VCH: New York, 1995. (c) Heck, R. F. Palladium Reagents in Organic Syntheses; Academic Press: New York, 1985.
- (3) (a) Sheldon, R. A.; Arends, I. W. C. E.; ten Brink, G.-J.; Dijksman, A. Acc. Chem. Res. 2002, 35, 774–781. (b) Sheldon, R. A.; Arends, I. W. C. E.; Dijksman, A. Catal. Today 2000, 57, 157–166. (c) Markó, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J. Science 1996, 274, 2044–2046.
- (4) (a) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. J. Org. Chem. 1999, 64, 6750–6755. (b) Blackburn, T. F.; Schwartz, J. J. Chem. Soc., Chem. Commun. 1977, 157–158. (c) Larock, R. C.; Peterson, K. P. J. Org. Chem. 1998, 63, 3185–3189. (d) Steinhoff, B. A.; Stahl, S. S. Org. Lett. 2002, 4, 4179–4181. (e) Schultz, M. J.; Park, C. C.; Sigman, M. S. Chem. Commun. 2002, 24, 3034–3035. (f) Hallman, K.; Moberg, C. Adv. Synth. Catal. 2001, 343, 260–263. (g) Kaneda, K.; Fujii, M.; Morioka, K. J. Org. Chem. 1996, 61, 4502–4503.
- (5) (a) ten-Brink, G.-J.; Arends, I. W. C. E.; Sheldon, R. A. Science 2000, 287, 1636–1639. (b) ten-Brink, G.-J.; Arends, I. W. C. E.; Hoogenraad, M.; Verspui, G.; Sheldon, R. A. Adv. Synth. Catal. 2003, 345, 1341–1352. (c) Jensen, D. R.; Schultz, M. J.; Mueller, J. A.; Sigman, M. S. Angew. Chem., Int. Ed. 2003, 42, 3810–3813. (d) Kakiuchi, N.; Maeda, Y.; Nishimura, T.; Uemura, S. J. Org. Chem. 2001, 66, 6620–6625. (e) Kakiuchi, N.; Nishimura, T.; Inoue, M.; Uemura, S. Bull. Chem. Soc. Jpn. 2001, 74, 165–172.
- (6) (a) Mandal, S. K.; Jensen, D. R.; Pugsley, J. S.; Sigman, M. S. J. Org. Chem. 2003, 68, 4600-4603. (b) Bagdanoff, J. T.; Ferreira, E. M.; Stoltz, B. M. Org. Lett. 2003, 5, 835-837. (c) Jensen, D. R.; Sigman, M. S. Org. Lett. 2003, 5, 63-65. (d) Mueller, J. A.; Jensen, D. R.; Sigman, M. S. J. Am. Chem. Soc. 2002, 124, 8202-8203. (e) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2001, 123, 7725-7726.
- (7) Very recently, Sigman et al. successfully carried out the oxidation with S/C = 1000 (under 1 atm molecular oxygen) and S/C = 200 (under 1 atm air) by using N-heterocyclic carbene a Pd complex/3 Å molecular sieves/HOAc catalyst system.^{5c}
- (8) (a) Watson, M. D.; Fechtenkotter, A.; Müllen, K. Chem. Rev. 2001, 101, 1267–1300. (b) Berresheim, A. J.; Muller, M.; Müllen, K. Chem. Rev. 1999, 99, 1747–1785 and references therein.
- (9) Under 30 bar^{5a} air and 50 bar^{5b} O₂/N₂ (8/92), TONs of 400 and 1000 were realized, respectively, with water-soluble Pd catalyst.
- (10) With a heterogeneous Pd catalyst, Kaneda et al. reported very high TON (236 000) in oxidation of 1-phenylethanol at 160 °C under molecular oxygen. Mori, K.; Yamaguchi, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2002, 124, 11572−11573.
- (11) Crystal data of Pd(OAc)₂(1)₂: monoclinic, space group C2/c, colorless, a = 36.15(9) Å, b = 10.09(5) Å, c = 20.68(6) Å, $\beta = 98.94(4)^{\circ}$, V = 7451.5(47) Å³, Z = 4, T = -160 °C, $d_{calcd} = 1.257$ g cm⁻³, μ (Mo, K_a) = 3.05 cm⁻¹, $R_1 = 0.067$, $wR_2 = 0.093$, GOF = 1.373.
- (12) As for the molecular structure of Pd(OAc)₂(Py)₂, see: Kravtsova, S. V.; Romm, I. P.; Stash, A. I.; Belsky, V. K. Acta Crystallogr., Sect. C 1996, 52, 2201–2204.
- (13) Pd black formation is affected considerably by the S/C ratio. Maintaining the same concentration of Pd(OAc)₂(Py)₂ as that in run 2 in Table 1 led to observation of complete Pd black formation within 2 h (S/C = 1000, run 2 in Table 1), 3 h (S/C = 700), 5 h (S/C = 400), and 7 h (S/C = 100), but no Pd black formation was observed with S/C = 50.
- (14) Such a "long-range steric effect" was also observed in a rhodium-catalyzed hydrosilylation of ketones with a bowl-shaped phoshine.¹⁵
- (15) Niyomura, O.; Tokunaga, M.; Obora, Y.; Iwasawa, T.; Tsuji, Y. Angew. Chem., Int. Ed. 2003, 42, 1287–1289.

JA031936L